Salt-inducible kinase 2 regulates mitotic progression and transcription in prostate cancer.

نویسندگان

  • Hélène Bon
  • Karan Wadhwa
  • Alexander Schreiner
  • Michelle Osborne
  • Thomas Carroll
  • Antonio Ramos-Montoya
  • Helen Ross-Adams
  • Matthieu Visser
  • Ralf Hoffmann
  • Ahmed Ashour Ahmed
  • David E Neal
  • Ian G Mills
چکیده

UNLABELLED Salt-inducible kinase 2 (SIK2) is a multifunctional kinase of the AMPK family that plays a role in CREB1-mediated gene transcription and was recently reported to have therapeutic potential in ovarian cancer. The expression of this kinase was investigated in prostate cancer clinical specimens. Interestingly, auto-antibodies against SIK2 were increased in the plasma of patients with aggressive disease. Examination of SIK2 in prostate cancer cells found that it functions both as a positive regulator of cell-cycle progression and a negative regulator of CREB1 activity. Knockdown of SIK2 inhibited cell growth, delayed cell-cycle progression, induced cell death, and enhanced CREB1 activity. Expression of a kinase-dead mutant of SIK2 also inhibited cell growth, induced cell death, and enhanced CREB1 activity. Treatment with a small-molecule SIK2 inhibitor (ARN-3236), currently in preclinical development, also led to enhanced CREB1 activity in a dose- and time-dependent manner. Because CREB1 is a transcription factor and proto-oncogene, it was posited that the effects of SIK2 on cell proliferation and viability might be mediated by changes in gene expression. To test this, gene expression array profiling was performed and while SIK2 knockdown or overexpression of the kinase-dead mutant affected established CREB1 target genes; the overlap with transcripts regulated by forskolin (FSK), the adenylate cyclase/CREB1 pathway activator, was incomplete. IMPLICATIONS This study demonstrates that targeting SIK2 genetically or therapeutically will have pleiotropic effects on cell-cycle progression and transcription factor activation, which should be accounted for when characterizing SIK2 inhibitors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell Cycle and Senescence Salt-Inducible Kinase 2 Regulates Mitotic Progression and Transcription in Prostate Cancer

Salt-inducible kinase 2 (SIK2) is amultifunctional kinase of the AMPK family that plays a role in CREB1-mediated gene transcription and was recently reported to have therapeutic potential in ovarian cancer. The expression of this kinase was investigated in prostate cancer clinical specimens. Interestingly, auto-antibodies against SIK2 were increased in the plasma of patients with aggressive dis...

متن کامل

Resveratrol regulates the PTEN/AKT pathway through androgen receptor-dependent and -independent mechanisms in prostate cancer cell lines

The tumor suppressor gene PTEN (phosphatase and tensin homolog deleted on chromosome 10) and the androgen receptor (AR) play important roles in tumor development and progression in prostate carcinogenesis. Among many functions, PTEN negatively regulates the cytoplasmic phosphatidylinositol-3-kinase/AKT anti-apoptotic pathway; and nuclear PTEN affects the cell cycle by also negatively regulating...

متن کامل

NF-kappa B activates prostate-specific antigen expression and is upregulated in androgen-independent prostate cancer.

The transcription factor NF-kappa B regulates gene expression involved in cell growth and survival and has been implicated in progression of hormone-independent breast cancer. By expressing a dominant-active form of mitogen-activated protein kinase kinase kinase 1, by exposure to tumor necrosis factor alpha, or by overexpression of p50/p65, we show that NF-kappa B activates a transcription regu...

متن کامل

Hypoxia-inducible factor-1 in human breast and prostate cancer.

The tumor microenvironment is best characterized as a fluctuation of hypoxia and nutrient deprivation, which leads to epigenetic and genetic adaptation of clones and increased invasiveness and metastasis. In turn, these hypoxic adaptations make the tumors more difficult to treat and confer increased resistance to current therapies. Part of this adaptation is the regulation of gene products in r...

متن کامل

Interleukin 6 activates androgen receptor-mediated gene expression through a signal transducer and activator of transcription 3-dependent pathway in LNCaP prostate cancer cells.

Interleukin 6 (IL-6) is a cytokine that regulates not only immune and inflammatory responses but also the growth of some tumors, including prostate carcinomas. IL-6 signals through Janus kinase, signal transducer and activator of transcription 3 (STAT3), and mitogen-activated protein kinase and is also able to induce androgen receptor (AR)-mediated gene activation in prostate cancer, which is a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cancer research : MCR

دوره 13 4  شماره 

صفحات  -

تاریخ انتشار 2015